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SectIon 1

I NTRODUCT I ON

BACKGROUND

Maintaining structural Integrity of thin section aircraft components when

they may contain potential flaws Is the primary objective of damage tolerance 0

evaluations. Because Integrity of aircraft structures may become challenged

by severe and rapid heating, especially when the resulting thermal loads are

superimposed with the aerodynamic loads of normal fl Ight, accurate damage
tolerance analysis must consider the effect of thermal environment on

structural reliability (1, 2).

High Intensity heating of aircraft structures may be produced by aerodynamic

heating, by laser Irradiation, or by localized Intense fire. Structural

reliability will be reduced by the development of thermal stresses as well as

the degradation of strength properties at elevated temperatures caused by the

heating. The failure modes resulting from these conditions Include localized

melting or complete burn through. Such conditions could result In brittle or

ductlle fracture, or buckling of thIn sectlons depending on the nature of the

combined stress state and the type, size, and location of existing flaws.

Fully plastic failure of unflawed aluminum panels by plastic collapse has been

studied to the extent where analytical predictions of the residual strength

are in good agreement with experimental measurements (1). These predictions

are based on transient heat transfer analysis of the thermal heating and

straightforward stress analysis to determine the failure load from a fracture

strength versus temperature relationship. In the Investigation performed

herein, similar analytical methods for heat flow and stress analysis have been

developed to calculate the crack driving force In flawed metallic structures.

The emphasis of the methodology will be to establ ish the conditions for

~ '.5 * . 5 ,.... S 5 ~ ... . . -J. . 4-1U .
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nonductile crack extension where thermal heating Is severe enough to increase

tensile loadings In critical structure components where cracking may exist.

PROJECT SCOPE

In failure analysis evaluations of flawed structures, the application of

fracture mechanics provides a qLantitative means of assessing structural

Integrity. The fracture mechanics approach to structural reliability accepts

that flaws wIII exist and that conditions can be established where flaws wilI

remain stable and not grow to an unacceptable size during service between

inspection Intervals. Fracture mechanics evaluations require the calculation

of crack tip stress Intensity factor (K) which defines the severity of the

flaw in terms of Its physical size and the applied stress acting on it. By

calculating K and comparing It with the material fracture toughness, the

ability of a given loading condition and flaw dimensions to cause unstable

fracture can be studied.

The development of a general methodology for determining stress Intensity

factors for aircraft structures exposed to Intense thermal heatlng wiII

require a materials property data base at elevated temperatures, a nonlinear

heat transfer analysis model, a thermal stress analysis model, and a fracture

mechanics solution technique for determining K. Although the problem Is very

complex, the present investigation analytically examines the behavior of

through-cracked and part-through-cracked aluminum panels subjected to Intense

heatlng. Several simplifying assumptions and model Idealizations have been

made In order to demonstrate the technique In this Phase I project. Stress

Intensity factors are computed by the Influence function method for a range of

crack locations within the panel relative to the position of the heat source.

The usefulness of the method Is demonstrated by both the presentation of
rJ.-

numerical results and the illustration of the ability to solve these complex

probl ems on desktop microcomputers.

1-2 '
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Section 2

STRATEGY AND OBJECTIVES

The strategy employed In this work for calculating stress Intensity factors

was to use a weight or Influence function approach. As will be discussed

later, this technique Is very efficient and enables the basic method to

provide accurate results using small microcomputers without the need for large

mainframe computers. Because the Influence function method requires as Input

the distribution of stress In the structure at the location of the postulated

flaw, a thermal stress solution method was also developed which can be

executed on a small microcomputer.

The primary objectives of this project were:

" To develop an Influence function algorithm complete with the thermal

stress solution for calculating stress Intensity factors

" To demonstrate the method for two simple engineering problems

" To specify the general requirements for a computer program that will

run on a desktop microcomputer

Feasibility of this overall approach is shown In Section 5 by successfully

demonstrating stress Intensity factor calculations for the following two

0 problems: (1) through-cracked panel subject to laser beam Impingement In the

vicinity of the crack and (2) an edge-cracked plate subjected to aerodynamic

heating on one side. Problem Input parameters for thermal flux, absorptivity,

and heat losses due to convection and radiation were thoroughly researched to

provide a meaningful demonstration of the method. Verification of the

accuracy of the developed software Is shown by comparing stress Intensity

factor results calculated here with published results for some simple cases.

2-1
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Section 3

DETERMINATION OF STRESS INTENSITY FACTORS

FRACTURE MEQ-AN ICS CONCPTS

Introduction

In applying fracture mechanics analysts to failure prevention evaluations, It

is Important to establ Ish the possible modes by which the structure may fal.

Also, the parameters which are Important in determining the residual strength

of a structure containing defects must be defined. The failure behavior of

structural metals can be classified Into three regimes. The disciplines

required to assess these regimes are:

" Linear elastic fracture mechanics (LEFM) - The structure falls In a

brittle manner, and on a macroscale, the load to failure occurs within

nominally elastic loading.

" Elastic-plastic fracture mechanics (EPFM) - The structure falls In a

ductile manner, and significant stable crack extension by tearing may

precede ultimate failure.

" Limit load or plastic collapse - The failure event is characterized by

local large deflections and local plastic strains associated with

ultimate strength collapse at a cross section (the structure exhausts

Its redundancy through the development of multiple local plastic

Instabilities until, under continued application of load, global

collapse occurs).

A schematic diagram showing the relationship between critical or failure

stress (i.e., residual structural strength) and flaw size is shown in I

Figure 3-1 for the failure modes previously described. The shape and position

3-1
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of the failure locus will depend on the fracture toughness (K ) andIc
strength properties (a ) of the material as well as the structuraluts
geometry and type of loading.

Linear elastic fracture mechanics is used most appropriately to describe the

behavior of low toughness/high strength materials In which the plastic zone Is

small relative to the structural geometry and little ductility precedes

fracture. With this method, no account Is taken of Increased material

resistance to brittle failure when significant plasticity occurs. For thermal

stress problems considered In this application, It Is assumed that flaws are

primarily driven by thermal loads that will elevate stresses local to the flaw

by the elastic constraint to thermal displacements. Hence, flaws located In

the vicinity of rapid thermal change will behave elastically provided that the

thermal stresses are nominally low (below material yield strength). For this

condition, LEF4 theory will apply and we restrict our discussion to this case.

Linear Elastic Fracture Mechanics PrInciples

The principles of LEFM effectively link three parameters--the flaw size, the

fracture toughness of the material, and the appl led stress. If any two of

these are known, the critical value of the third can be quantified. Although

the stress distribution of a cracked structure for an arbitrary mode of

loading and shape of body and crack can be quite difficult to determine, only

three deformation modes can occur near the tip of the crack; the faces can be

pulled apart (Mode I) or sheared perpendicular or parallel to the leading edge

of the crack (Modes II or Ill). These three loading modes are shown

schematically in Figure 3-2a and the character of the crack near-tip stress

distribution Is Illustrated In Figure 3-2b. The crack opening mode or Mode I

In which the load is appi led normal to the crack face is general ly considered

the most damaging of the three modes.

As mentioned above, the most useful parameter for describing the character of

thecrack near-tip stress distribution Is the stress Intensity factor. The

stress Intensity factor (K) defines the local crack tip response to global

3-3
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(a) Basic Crack Opening Modes.
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* All stress components have the form:

'k f

Where i x, Y, Z; j=x, y, z; and k 1 , 11, 111

. I

(b) Near Tip Stress Components.

Figure 3-2 - Review of Linear Elastic Fracture Mechanics.
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conditions and Is calculated In terms of the nominally appl led stress (a), the

crack length (a), and a factor that depends on the flaw geometry, stress- .

distribution, and structural displacement constraints (F(a)) from the "e

rel ation:

K = Fov -a (3-1)

Assumlng Mode I loading, fracture Is predicted when the applied K value

reaches a critical level. For plane strain conditions, this critical level Is

the fracture toughness, Kc, and a requirement for safe service Is:

K < K (3-2)

I Ic .N

The critical value of applied stress can be computed In terms of flaw size and I
fracture toughness from the expression:

a KlC (3-3)

Likewise, given the applied stress and critical toughness, the critical flaw

size can be determined implicitly from: 5',

-- ( C ) 2( -,.
ac - c) (3-4)

.5"

A detailed discussion on the computation of K follows next.

ANALYSIS METHODOLOGY 
N%.

Jntroduction

Although many closed form or approximate solutions exist for K, often
numerical techniques are required to calculate K accurately for the actual

structure. A numerical approach was required for the thermal problems

considered herein because of the complex stress state expected for the thermal

behavior of metal structures subjected to rapid thermal heating. Examination

3-5
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of Eq. (3-1) shows that the key element in calculating K Is the determination

of the function F(a), which carries all the Information concerning the

influence of load distribution and geometry. Clearly, If K has been computed

as a function of a and a, then the desired nondimensional function F(a) Is

determined trivially.

Tradltli al numerical methods for calculating K are either energy based or

crack tip stress/displacement based techniques. These stress analysis methods

involve the direct modelling of crack face boundaries with very refined

regions of discrete elements or nodes In the stress solution. Such

traditional approaches will not be applicable for use with microcomputers

because of the significant numerical effort required. Under certain

circumstances, solution of the stress Intensity factor for one set of loadings

on a solid provides sufficient information to generate easily stress Intensity

factor solutions for a complete class of loadings. This approach Is known as

the Influence function method, and Its highly efficient nature Is exploited in

this Investigation. This characteristic not only provides accurate K

solutions for thermal problems but also al lows the method to be used on snall

computers.

Influence Function Method

The Influence function method Is a numerical technique that allows for the

calculation of K for nonlinear (general) varying stress distribution acting on

the crack. The Influence function or weight method was developed by Bueckner

(3) and clarified later by Rice (4) for two-dimensional problems. The

approach was expanded to three-dimensional problems by Besuner (5) and Cruse

(6). Results developed by Bueckner in 1958 (1) are of considerable value for

application to problems dealing with body forces, thermal effects, and

residual stress.

3
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where L Is the crack line and a(x) Is the "uncracked" stress distribution
norm a to the crack face. Once the Influence function has been formulated for

a given crack configuration, the stress Intensity factor for any apploed

stress field determined from the uncracked geometry can be computed by simple

numerical Integration of Eq. (3-5).

The essential features In the formulation of the influence function method are

based on the fol lowing fundamentals:

* The application of elastic superposition allows the use of the

-a

uncracked stress dasributions In the K analysis. t

n The Influence function Itself Is Invariant with stress and provides

the vehicle to calculate the effect of the crack In redistributing any
stress field. fy

The background and basis of the above prnciples and their Impact on smplyng

the essential fr in tesfriulatin the next fo subsectionsm

Superpostion and Crack Face Loadng Equivalence

The principle of superposition reduces the K solution of an arbitrary and

perhaps difficult crack problem to two simpler problems--the stress analysis

problem but without the crack and the problem of a cracked body with an

applied pressure that cancels the uncracked stress feld to establsh the

traction free boundary conditions along the crack face.

3-7
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In Bueckner's formulation, he applies the theorems of Clapeyron and Bettl to

demonstrate that K for an arbitrary cracked body subject to remotely appl led

stresses, displacements, and body forces Is Identical to that due to a simple

loading system on the crack face (1, f). This principle Is illustrated In

Figure 3-3. The general cracked body problem shown In Figure 3-3a is

considered to be the sum of two other problems shown In Figures 3-3b and 3-3c.

.- Hence:

(a) (b) (C)
K K + K

In the original problem (Figure 3-3a), the cracked body is subject to loading

Involving surface fractions over Boundary S, Imposed displacements over

Boundary $2, and body forces within the volume (Y) of the body. A stress
free crack exists In the body. In the problem given In Figure 3-3b, the

*. stress distribution prior to the Introduction of the crack (the "uncracked"

stress) Is assumed to be known, and the surface fractions on the plane where

the crack is to appear are denoted as T*o The fractions T * are stresses

which when applied to the crack face of the original problem are just

sufficient to close the crack completely. Because the crack Is perfectly
(b)

closed, K equals zero. Hence, the model problem given In Figure 3-3c Is

Identical to that of the original problem (Figure 3-3a). In this case

(Figure 3-3c), the body Is treated with zero boundary stresses on S , fixed

zero displacements on S . no body forces over V, and only T * acting on

the crack face. The strain energy (U) Is simply the work done by T I on the

crack face:

I 2 Ti* ui ds (3-7)

where L Is the crack boundary. The rate of change of U with crack length for

a body of unit thickness Is related to stress Intensity factor by:

U K K2 "

a R (3-8)

3-8
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The parameter, H, represents the elastic constants: E for pl ane stress and
2

E/(1 -V ) for plane strain where E Is modulus of elasticity and V Is

Polsson's ratio.

As will be shown later In the results for thermal heating, It is highly

desirable to view the original crack problem of Figure 3-3a as the problem

shown In Figure 3-3c. It is preferable to analyze the uncracked body to

obtain the solution for T* prior to solving for K. This uncracked analysis

permits Identification of fla locations by first observing high stress points

In the body as well as determining potential crack propagation paths.

Furthermore, In some cases, consideration of other stresses not usual ly

determined by numerical stress analysis Is required (e.g., residual stress).

These stresses, however determined, can be simply superimposed and substituted

in Eq. (3-5).

Influence Function Generation

To create an Influence function, h(x), It Is necessary to obtain the solution

for T ' u, and K for a simple loading condition by traditional means as

suggested by Eqs. (3-7) and (3-8) and to differentiate the crack face

displacements with respect to crack length. Development of the theoretical

basis is rather complex and Involves a deep understanding of analytic function

theories (3) or a sophisticated understanding of energy principles of

elasticity (4). A clear depiction of the theory Is possible by considering

two cases of loading on the same body with the following results:

(1)
9 K Is the stress Intensity factor for Case 1

(1)
* u is the displacement vector throughout the body for Case 1

(2)
e T Is the stress vector appl led by the boundary of the body for

Case 2

(2)
* F Is the body force acting within the body for Case 2

3-10



The results of the theoretical analysis (4) show that for Case 2 the stress

Intensity factor Is given by:

'.I,

K( ) _ H I 2 )(1) f)u'2)  ""__

2K) T 2)a ds + F (2a a da (3-9)

a.

where S represents the boundary of the body and A Is the area of the body.

Since the solution of any crack problem can be reduced to the solution of the

same geometry with the loading on the crack boundary only, we can confine
(2) (2) (2)(x)

Eq. (3-9) to the case where F 0, T equal too W, and the
n

only displacement of relevance in Case 1 Is the displacement normal to the(1)
crack face u over the region of the crack boundary. The expression

(2) n
for K( 2 then becomes:

K(2) H a (2) n dx (3-10)

K Jo a.

Comparison of Eq. (3-10) with Eq. (3-5) gives the general form of the

Influence function as:

H n
h(x) = K-1 a (3-11)

Once h(x), the Influence function, and o(x), the "uncracked" stress acting
along the hypothetical crack plane, are known, the stress Intensity factor can

be calculated by simple numerical Integration. This Integration can easily be

accompl Ished on a desktop computer.

3-.
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INFLUENCE FUNCTIONS FOR TWO CRACKED BODY GEOMETRIES

Through Cracked Infinite Plate

* The Influence function for a through crack In an Infinite plate shown In

.*. Figure 3-4 was derived from the uniform tension solutions given by Irwin (9)

or Erdogan (10) where stress functions were used to establish the followIng:
J

K = a /7-

(3-12)

u(x) = x (2a - x)1/2

From Eq. (3-11), the Influence function for a crack over the region 0 < x < 2a

under Mode I loading is:

h (X = (7ra)- 1 /2 1/2 (3-13a)I-(-a-- x

for a crack tip located at x = 2a, and

hi(x) = (na)-i/2 (2axx- x12 (3-13b)

for a crack tip at x = 0. The Influence function for Mode II and Mode III

loadings are of the same form as Eq. (3-13), hence:

h = h h (3-14)I II Ill

The solution for K or K follows from Eq. (3-5) but with the stressS Ill
distributions for in-plane (a ) or out-of-plane (o ) shear stress

xz xy
distribution substituted for the normal stress a (x).

z
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Edge Cracked Pl ate

The Influence function for an edge cracked plate of finite thickness was

derived by Bueckner (1) for the geometry shown In Figure 3-5. A series

approximation was used to obtain the function with a reported accuracy of

1 percent for 0 < a/w <0.5 (i.e., crack penetrations up to one-half the plate

4 . thickness). The resulting Influence function for Mode I loading Is:

hl(X) : 12/7)1/2 (a - x "112 i + MI(J aj+ _ x (3-15)

where,

2 6
M I A + B1(a/w) + C (a/w)1 1 1

2 6
M = A + B (a/w) + C (a/w)

2 2 2 2

A = 0.6147, B = 17.1844, C = 8.78221 1 1

A = 0.2502, B = 3.2889, C = 70.0444
-. 2 2 2

For the case of edge crack in a half space, the coefficients become

M = A and M = A which simplifies the expression for h (x).1 1 2 2I
Equation (3-15) In conjunction with the general stress distribution, a (x),

z
can be Integrated according to Eq. (3-5) for 0 < x < a to obtain the stress

Intensity factor.

Verification of Solutions

The solution of stress Intensity factor for the two Influence functions was
.4.1

accomplished by numerical integration of Eq. (3-5). A simple rectangular rule
was used to perform the Integration. Because h(x) is singular at x = a, a

nonuniform integration grid was used that refines the Integration steps as x

% 3-14
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approaches the crack tip. Up to 30 Integration points were used In the

numerical procedure.

The accuracy for the program was verified by comparing the numerical results

for the case of uniform tension to that of known values given In the

literature (12). This comparison Is shown In Figure 3-6 for both flaw models.

Very good agreement between the numerical algorithm and the literature results

Is observed.

3-16

IN 
N:,S

.. ae5.. --d



-3.2 A I N N X I m 1 ,

3.0 THROUGH CRACK EDG2 CRACK

2.6 a

2.4 - b

2.2 - THEORETICAL
2.2 INFLUENCE FUNCTION *

2.0

0 1.8 --

-

1.6 .EDGE CRACK
>" MODEL

z 1.4z
-- THROUGH CRACK

1.2 / MOEL

1.0 M,V/)

0.0

0.60.6 I ,I I
0 0.1 0.2 0.3 0.4 0.5

CRACK LENGTH OR DEPTH, a/b

Figure 3-6 - Comparison of Numerical Results From Influence
Function Method With Theory For the Case of
Uniform Tension.
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Section 4

TIERPL ANALYShIS EDELS

INTRODUCT ION

As described In Section 3, the stress Intensity factor model requires the

thermal stress distribution for the solid. In classical thermal stress

analysis, the heat transfer solution Is decoupled from the mechanics solution

since thermal deformations usually are small and can be neglected In the heat

transfer analysis. Although in severe thermal conditions the deformations

could be large, the determination of stress herein will be restricted to small

displacements and no phase change so that the decouplIng of the two problems

Is acceptable.

The classical representation of heat flow in a three-dimensional solid Is

given by:

PC -L (k (k -T +-L(kT +G (4-1)

where p Is the material density, C is the specific heat, T Is the temperature,

t is time, and k Is thermal conductivity. The function G Is the energy

produced per unit volume per unit time. In Eq. (4-1), p, C, and k are

considered functions of both position and temperature and G Is a function of

position and time. This equation Is a statement that the rate at which energy

accumulates In a vol me Is equal to the net flow of heat across the surfaces

of that volume plus the rate at which heat is produced within the volume.

The solution of Eq. (4-1) In conjunction with the appropriate boundary

conditions and initial conditions gives the transient temperature response

throughout the solid. We, therefore, seek solutions of Eq. (4-1) for the

cases of laser Irradiation and aerodynamic heating so that the desired thermal

stresses can be computed.

4-1
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One of the most Important effects of Intense heating by laser Irradiation Is

the conversion of the electromagnetic wave energy In the beam into thermal

energy In the material (f3). The rate and source of production of heat by the

laser will yield the function G. For metals exposed to a continuous beam at a

wave length of approximately 10 pm, energy absorption occurs in a very thin

layer at the surface. It then becomes convenient to obtain solutions for

Eq. (4-1) with G = 0 but with a specified heat flux at the surface boundary.

Hence, for continuous wave radiation by a CO laser (wave length of
2

10.6 pm), the laser beam Impingement problem can be treated similar to

aerodynamic heating In that the impinging heat flux constitutes a boundary

condition. As will be discussed later, other surface effects, such as

reradlatlon of energy and heat loss due to convection from the surface, must

also be Included as boundary conditions.

RADIAL HEAT TRANSFER IN A SEMI-INFINITE PLANE

Governing Equations

The representation of the laser beam Impingement plane Is modelled as a

two-dimensional radial plane. Figure 4-1 illustrates a portion of a

semi-infinite metal plate of thickness, w, with Its exposed surface Irradiated

by a laser beam of radius, R. A cylindrical coordinate system (r, 0 ,z) Is

also shown with the z-axis coincident with the axis of the laser beam and the

origin located at the metal plate back wall.

In addition to the impinging laser beam, the exposed surface (z = w) also

experiences two other modes of heating--convective cool ing (or heating) by

moving air at all values of r and surface reradlatlon at all values of r. It

Is assumed that the back wall (z 0) Is Insulated at all values of r. If the

laser beam Is axisyrmetrlc about z and the convection coefficient Is constant,

then the resulting heat conduction within the metal Is also axisymmetric with

the result that the metal temperature at any Instant In time will be a

function of r and z but not angular position about the z axis.

4-2
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The time varying heat transfer In the metal plate Is described as follows.

Initially, at time t < 0, the plate Is at a uniform temperature throughout

because the convective cool ing (or heating) and exposed surface reradlatlon

are uniform over the entire surface. Since the back wall Is adiabatic, there

is no local Ized source of energy anywhere with the result that no temperature

gradients are promoted. At the time t = 0, the laser beam strikes the exposed

surface over the circular area of radius, R. The beam may be constant or

variable with time. The high level of energy associated with the beam Is

conducted down Into the metal and outward In the radial direction. Metal

temperatures at z = w and r < R rise rapidly Initially. Temperatures Indepth

and for r > R then start to Increase as the radial conduction commences.

Counteracting the laser beam energy source are the two energy sinks provided

by surface reradlation and convective cooling.

Due to the heat transfer events described above, the temperature field In the
metal plate Is two-dimensional and time dependent, T = T(r, z, t). It can be

shown from Eq. (4-1) that this temperature field In cylindrical coordinates

with no internal heat generation Is governed by the following partial

differential equation:

r 3 r (4-2)

where,

p p(T) = Metal density

C C(T) = Metal specific heat

k k(T) = Metal thermal conductivity

"p
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Note that Eq. (4-2) Is formulated with the metal thermophysical properties p,

C, and k al lowed to vary wIth temperature. Of course, Eq. (4-2) Is subject to

both an Initial condition:

T = T(r, z, 0) (4-3)

for all z and r val ues, and the heat flux boundary conditions at z =0 and

z = w already described:

T(r, o, t) 0 (4-4)
az

-k T(r, w, Q(-5

where Q Is the net heat flux from the surface energy balance. The surface

energy balance In Eq. (4-5) Is of the general form:

sq"(r, w, t) = - s  laser + convection + q radiation (4-6)

where 0 Is the surface absorptance. Thus, for the laser Impingement regions
(0 < r< R):

T4  4
-k , T ) + ~ ( T _ T )(4-7)
;z s laser - +

while outside of the laser Impingement region (R < r < m):

-k )T = h (T - T_ ) + (s T ( T4  T 4 ) 4 8
z n (48)

where, in the equations above, h Is the surface transfer coefficlent, T= Is

the air temperature, T Is the remote temperature for radiation, a is the
O $

Stefan-Boltzmann Constant, and t is surface emlttance.
m

Since Eq. (4-2) Is nonlinear due to the variation of thermophyslcal properties

with temperature, the most practical means of solution Is to use a finite

4 -)
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difference method which is based on a network of discrete nodes In the region

of the metal plate where significant heat conduction occurs.

Numerical Solution

In this work, the approach described by Griffis, et al., (1) has been

followed. Figure 4-2 Illustrates a lumped mass nodal network around a surface

node. This node experiences heat conduction to or from all adjacent Nodes 1,

2, and 3 and heat fluxes to or fram its exposed surface due to the three

mechanisms Identified. As derived by Griffis, et al., (1), the Incremental

temperature rise at the surface, AT1, for an Increment In time, At, Is given

by:

AT, = Kij Tj - Ti) + riAriLsq"lase r

(4-9)

Ar a C (T 4 - T. 4 ) + r.Arih(T -Ti) At

i i 1 i riAriziC i

where, for the radial direction:

K j = 2Aij -+ (4-10)

r. + r.

A..- = - Az
IJ2 (4-11)

and, for the vertical direction:

K.. - 2A Az + z -

1 1A.j k kj (4-12)
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Figure 4-2 -Lumped Mass Heat Conduction Model.
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A r(4-13)

For a subsurf ace node, Eq. (4-8) s-mpl If les to:

V

AT, .iT - T.AAt (4-14)

Fore K susrfed ode Eq. (4-1) ip fo thes to:ldietonadb

Eq. (4-114) for the vertical direction. Equations (4-9) and (4-14) are the
desired finite difference approximations to Eq. (4-2).

As discussed by Griffis, et al. (1), the right hand side of Eq. (4-9) Is

evaluated at present time and the left hand side Is treated as an incremental

change between present temperature and future temperature after el apsed time,

At. Mathematically, this Is an explicit (rather than Implicit) numerical

solution approach. Because of the thinness of aircraft skin relative to other

dimensions, the through thickness heat flow Is neglected In the present

investigation. This assumption will allow for a simplication of the method to

a one-dimensional model.

THROUGH THICKNESS HEAT FLCW IN A CURVED SHELL

Governing Equations

The thermal response resulting from one-dimensional heat flow through the

thickness of a curved cylindrical shell was used to model uniform aerodynamic

heating of the leading surface. The model geometry Is shown In Figure 4-3.

4-8
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(b) Finite Difference Model.

Figure 4-3 -Thermal Model Geometry.
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The solution for the transient response of two concentric shells of dlssmilar

materials Involves solving a parabolic partial differential equation of the

form:

a2T + 1 T T

Dr2  r ar at at (4-15)

where,

t = Time

r = Radial coordinate

T = Temperature, T(r, t)

a t = Thermal diffusivity

The modelling of two-layer construction will allow the analysis of aircraft

structures where a thermal protective skin Is appl led to the outer surface.

The boundary conditions are nonhoogeneous and require that shell Inside

(r = r ) and outside (r = r ) surfaces transfer heat between the metal
1 0

surface and the environment:

.h.

.-- (7 - Tw), at r = r. (4-16)

T.. 0T at r r

9r k 0 W(T-T0 Two 0  (4-17)
0

N.
i° • -1.



where,

h h = Surface heat transfer coefficients (inside and out-
0

side)

k k = Thermal conductivity of surface materials
0

T, T = Metal surface temperatures

Tm = Air or gas temperature

The Initial condition for the analysis Is:

T(r, 0) T = Constant (4-18)

0

Numerical Solution

The solutions of Eqs. (4-15) through (4-18) are accomplished using a finite

difference method based on the Crank-Nicolson technique. This Is an Implicit

approach, and the temperatures are obtained by solving a set of simultaneous

linear equations (14). The nodal point scheme for the difference equations Is
A

shown In Figure 4-3. By defining the temperature T(r, t) = T(R, t) - T(r, o),
A th

the difference equations T will represent the temperature at the I
I,n th

point Into the model and at the n step where radial distance, r = iAr and

time t = nt. For simplicilty, the "A" notation will be dropped In the

difference equations which wil I fol low.

Two additional or fictitious node points are used so that a central difference

relation can be formulated at the Inside and outside shell walls. This yields

three difference equations (one for each node at the wall and one for an

4-11
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Internal node). The finite difference equation for the convective boundary

condition Is:

I . - T

T i+ 1,n i- 1,n - h (T. T (4-19)
2Ar k i,n

The finite difference equailon for the partial differential equation at the

wall Including the convective boundary conditions Is:

T. + +Ar2 )T Aryt W n +
i +T, n+1 i Ary(t)n+1 2i

(4-20)

T At2 T Ary (t)n

S+tt 1n - Ary(t) +  2i -

where y(t) Is:

h (T . -T (4-21)
(T Ti,n

The finite difference equation for an Internal node, say the I + 3 node as an

example, Is:

T 2 2(1 + ,(r
- 2 Ti+2,n+- 2(n + I+ + I + 1 + T +4, n +

( 4-22 )

+ 1 
( 2T1 + 1 T
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For the case when an Insulated boundary (h = 0) Is assumed, the finite

difference equation for the Insulated boundary condition Is (central

difference):

Ti+ k+ 1,n - Ti+k -1,n = 0
2Ar

This results In a difference equation for the node at the wall which Includes

the Insulated boundary condition as:

T i+ k -1,n + I + Ar2) T+ k n+ I +T i+ k -1,n -r + __

( 4-2:3)

T. 0T +k,n

A special situation arises for the case of an Internal node at the Interface

of the dissimilar materials. For this node, the thermal properties of the

base material are assumed as an approximation, although a more exact solution

would Involve conservation of heat transfer across the boundary between the
two material s. It should also be noted that the temperatures at the

convective wall (T ) may oscillate In time about a central ("correct") value
w

when the heat transfer coefficient Is a very large value. This phenomenon

does not affect the accuracy of the Interior points and may be avoided by

using a smaller time Increment (14).

THERMAL STRESS ANALYS IS

Once the temperature distribution is known, the elastic stress in a

two-dimensional solid can be determined by satisfying the equations of

equilibrium and compatibility In conjunction with the boundary conditions. In

treating the true thermal stress problem (i.e., without body forces), the

4-13
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equili briun equations will automatically be satisfied If a stress function, €

can be found such that:
(4-24)

°x " 2 ' y Ax2 ' Oxy x~y (-4

where o , a , and a are the component stresses.
x y xy

Considering the plane stress case, the strain W can be expressed In terms of
the stress function through the use of stress strain relations. Substituton

of these strains Into the ompattb:l ity equation:

22 2~

x + -2 = _- 2xY
ay2 2  

=x y (4-25)

yields the Inhomogeneous blharmonlc equation:

V4c + EO e V2 =0 (4-26)

where E Is the modulus of elastcitp, a s the oefficent of thermal

2 eexpansion, and V notation represents the Laplacan operator. Solution of

Eq. (4-26) for the stress function with the approprate boundary conditions

will give resultant stresses from the equilibrium equations.

Although most thermal stress problems are treated by approximate solution

methods, a class of exact solutions will be exploited herein to simpl ify the

model (15). When the temperature does not vary In one direction, It can be

assumed that the stress due to heating does not vary In that direction. For
these stmple cases, It Is possible to Integrate the governing stress equatons

aboved i the thermal stress. For the circular plate geometry for laser

4-14
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heating shown In Figure 4-2, the integral equations for radial and hoop

stresses are (16):

b r 1
E Trdr Trdr (4-27)

br

0 0

[ Trdr+ J rdr (4-28)G( cce -Td + b-, "o rr

where E and a are constants, the thickness of the plate Is also constante
and b is the outer radius of the radial plane where traction free boundary

conditions are applied. By Introducing cylindrical body curvature,

Eqs. (4-27) and (4-28) have been rewritten in terms of the aerodynamic heating

problem shown in Figure 4-3 as given below:

r ri c~~ E [r 2 r. _0 r1 i

a2 2 r Ji Trdr J Trdr (4-29)r ro0 r ri ri

E r2r2 f Trdr + Trdr -Tr2  (4-30)Go0  r 2  ro- ri  ri  ri

where r and r are the inner and outer radii.
I 0

For the stress solution of each problem (i.e., laser heating or aerodynamic

heating), the above equations are Integrated at each time step using the nodal

4-15
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values for T(r, t) computed from the thermal solution routines. For the model

representing aerodynamic heating, as the Interface between the dissimilar

materials, another node is added so that two nodes at the Interface each have

the material properties of Its respective side. Since, In general, the

temperature distributions across the Interface will be continuous, the

accuracy In the stress calculation at the Interface will not be in significant

error even though a considerable stress discontinuity could exist at the same

point.

a

(a

a'

ta"

Ia',

-5%
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Section 5

LASER BEAM IRRADIATION ON A FLAT PLANE

PROBLEM PARAMETERS
,.

Geometry

The problem of laser beam impinging perpendicular on a flat planar surface in

* the vicinity of a through thickness crack Is represented In Figure 5-1. The

crack has a total length of 2a and the center of the crack Is a distance,

r , from the center of the laser beam. The crack Is also oriented by thec
angle, 0 , relative to a radial line connecting the crack center with the

laser beam Impingement zone. The beam cross section Is assumed circular with

a radius, R. The thickness of the plane Is defined as w. The local

coordinate system for the crack is the same as depicted earl ler In Figure 3-4.

Because of the many variables that can be Investigated, most of the geometry

parameters are held fixed. Specifically, R is equal to 2 Inches, w Is equal

to 0.25 Inch, and the ratio r /R is set at two In the analyses that follow.
c

The effect of crack length and Its relative angular position on stress

Intensity factor are analyzed parametrically.

Thermal Parameters and Material Properties

The thermal model described In Section 4 requires as Input the surface flux

Imparted by the laser, the absorptivity, the emissivity, and the basic thermal

properties of the panel. In the analysis, the panel material properties are

taken from typical values for aluminum alloy Type 7075-T6 (1, 12, 1a). A

summary of the assumed properties Is given In Table 5-1. The thermal and

mechanical properties listed are at room temperature. In the analysis, the

thermal and mechanical properties are assumed not to change with temperature,
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Table 5-1
SUMMARY OF PROPERTIES OF ALUMINUM ALLOY 7075-T6

Property Assumed Value

Specific Heat, C 0.23 BTU/lb--F

Density, p 169 lbs/ft3

5'Thermal Conductivity, k 75 BTU/hr-ft-0F

Thermal Expansion, cce 13 x 10-6 in/in..0F

Poisson's Ratio, v 0.33

Elastic Modulus, E 10.3 x 106 psi

Yield Strength, oy 73 ksi

Ultimate Strength, au 83 ksi

Liquidus Temperature 11750F

Sol idus Temperature 890OF

Incipient Melting Temperature 990"F
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although the temperature solution algorithm can accommodate temperature 'ft

varying properties.
I

2 2
Two laser radiation fluxes are assumed (100 W/cm and 500 W/cm ) which are

't.

capable of being achieved by a large CO laser. The surface absorption of
2

the aluminum panel can range between 0.6 to 0.9 depending on whether the

surface Is highly polished or heavily oxidized or painted (19. 20). In this

Investigation, a Is assumed to be 0.8. which represents a painted surface.
S

Further analysis simpl Ificatlon Is made by assuming gray body behavior for

radiation so that emlssivity and absorptivIty can be equated. Normally, these

parameters are surface condition and wave length dependent and. In general, I

Independent of each other. Remote temperature for radiation losses from the

panel Is assumed to be absolute zero (T = -460 0F).
0

STRESS SOLUTIONS

The temperature and stress response of the panel was solved with the finite

difference model. The panel was modelled in one dimension with only a single

node representing the global z (through thickness) direction. A total of 200 -

nodes was used in the radial direction to a maximum radius of 20 Inches.

Hence, the radial spacing between nodes was 0.1 Inch. Because of the Impl icit

numerical procedure, several time Increments were tried in order to verify

numerical stability. It was determined that At = 0.05 second gave reasonable

results. Transient temperature solutions for ten seconds duration were made,

however, because of the analysis assumptions, only the solutions up to four

seconds are real istic.

The temperature dIstrIbutIon at 0.5 second after the laser flux was appl led Is

shown In Figure 5-2. In this example and the calculations for K that follow.

the panel was assumed stationary so heat loss due to convection was zero. For

a flux of 500 W/cm , the metal temperature has risen by more than 200*F

above the Initial plate temperature of 700 F. Because the laser flux Is

appl led uniformly over the region, 0 < r/R < 1, the temperature profile 

exhibits a plateau behavior over the irradiated region with a very sharp

5-4%
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attenuation occurring at r/R = 1. The case of 100 W/cm 2 flux shows a

significantly less severe thermal upset of the plate and comparably lower

stresses and stress Intensity factor would result.

The radial (a ) and tangential (a,) stresses corresponding to the
r 6

temperature gradients of Figure 5-2 are plotted in Figure 5-3. The radial

stresses are everywhere compressive implying that cracks oriented parallel to

the laser beam boundary (6 = 900) will not experience positive crack
c

opening forces. Based on the magnitude of the stress components, flaws

oriented perpendicular to the beam boundary (6 = 0) will have the highest

Mode I stress Intensity factors. This result Is, In part, due to our

one-dimensional treatment of the problem, but nonetheless, this observation

will be true in most two-dimensional cases.

The highest tensile stresses occur close but just outside the beam boundary

and attenuate away as the radial distance away from the beam increases. A

time equal to 0.5 second, the peak stress is computed to be 9 ksl for the

500 W/cm2 case and about 2 ksi for the 100 W/cm 2 flux. Because the beam

energy Is both uniform and continuous in time, the stresses continuously

Increase In magnitude under the elastic conditions assumed In the model.

STRESS INTENSITY FACTORS

The stress Intensity factor was calculated by the Influence function method

described In Section 3. The stress Intensity factor for a crack oriented

perpendicular to the beam circular boundary Is shown In Figure 5-4. Here, K

is plotted as a function of time from the start of laser beam contact. The

crack center Is located 4 Inches from center to the beam and the crack half

length Is 1 inch (i.e., a = 1 Inch).

The K level at each crack tip Is observed to increase with time as would be

expected for a continuously local heating of the plate. The largest K values

are computed for the highest flux case, which is also expected. What is

interesting, however, is that the K level due to heating can be significant,
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up to 20 percent of K for the material and occurring within the first

Ic

second of irradiation although a crack of 2 Inches In total length would be

quite large to remain undetected In a critical airframe member. In any case,

It Is possible to generate large crack driving forces If the impinging beam Is

of significant energy and surface area contact.

As shown In Figure 5-4, the K levels for each crack tip are very nearly equal

early for the thermal transient but diverge rapidly as time progresses,

especially for the 500 W/cm flux case. The maximum K value occurs at the

crack tip (Crack Tip 2) closest to the laser heating zone due to the

Increasing stress gradient In that direction. Unstable fracture Initiating at
that crack tip would undoubtly propagate toward the hot spot where It probably

would arrest. Although not evaluated In this investigation, the conditions
'd for fracture reinitiation at the remote crack tip can also be determined by

selecting appropriate r /R ratios (between zero and two In this example).
c

The Influence function method Is capable of modelling the flaw for any value

of r
C

The stress Intensity factor as a function of crack length for the stress

conditions occurring at 2 seconds for the two laser fluxes Is given in

Figure 5-5. As the physical crack length is increased, the K level at each

crack tip also Increases with the crack tip closest to the beam exhibiting the

maximum computed K value. Although not calculated in this Investigation, it

would be expected that flaws located closest to the laser Irradiated zone but

not directly under the heated region would be the most critical based solely

on the thermal stress distribution. A proper structural Integrity evaluation

would combine aerodynamic loads with the thermal loads in order to establish

the critical flaw conditions. This feature could be easily added to the

present method.

For the case of a crack oriented 450 with respect to r , the crack tip
C

deformation mode Is predominately Mode II. The Mode II stress Intensity

factor Is plotted as a function of crack length in Figure 5-6. Comparison of

these results with the pure Mode I case of Figure 5-5 shows similar trends and
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these results with the pure Mode I case of Figure 5-5 shows similar trends and

magnitudes. For the 450 flaw, K Is not zero but Is very small--less than
1 nki l/2 Th fI

1 ksl In for the flaw lengths and thermal loads shown In Figure 5-6.

EFFECT OF AERODYNAMIC COOLING

In the previous calculations, the flawed panel was assumed stationary so that

the surface heat transfer coefficient (h) was Input as zero (no forced or

natural convection). If the panel was moving or If air was being moved over a

stationary plate at the given velocity, then the stresses In the panel would

decrease because surface cooling would reduce metal expansion in the

Irradiated region. Likewise, the stress Intensity factor for a given flaw

condition would also be reduced.

By repeating the thermal stress analysis with convection cooling, the

resulting stress intensity factor for a flux of 100 W/cm 2 Is given In

Figure 5-7. In the thermal analysis, the heat transfer coefficiernt was

estimated from the case of uniform air flow over a flat plate assuming a

turbulent boundary layer. At a free stream velocity of 1,100 ft/s (Mach 1),

the heat transfer coefficient was computed to be 115 BTU/hr-ft2-*F. In

Figure 5-7, the ratio of K to the K level computed for zero velocity (h = 0)

is shown as a function of velocities up to Mach 1. For Irradiation exposure

of 1 second, the reduction In K Is approximately 4 percent at Mach 1. These

reduction ratios are approximately the same for all flaw lengths due to the

short exposure time. After 4 seconds, however, K Is reduced more with a

greater reduction observed for longer flaws (a = 1 Inch) than shorter flaws

(a = 0.25 Inch) as shown In Figure 5-6. The maximum difference between K for

stationary plate to K in a plate moving at Mach 1 is about 10 percent for the

conditions depicted In Figure 5-6. It Is expected that the benefits of

aerodynamic cooling will become more significant for longer exposures and

higher fluxes where temperatures closer to melting could occur. Clearly, the

maximum excursion In K would be limited by the presence of surface cool Ing for

the case of a single laser pulse since the total heat absorbed would be

reduced by convection as opposed to Just heat conduction alone.
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Section 6

AERODYNAMIC HEATING OF A FLANE SURFACE

PROBLEM PARAMETERS

* A second problem Involving the surface heating of a finite thick plate was

solved In similar fashion to the laser beam problem. In this example, the

edge cracked plate model was used to Investigate the effect through thickness

temperature gradients have on a two-dimensional surface flaw. The thermal

model Illustrated In Figure 4-3 was used to solve for temperatures and

stresses as a function of time. The plate was assumed to be one material (no

cladding) with material properties the same as given in Table 5-1 and with a

thickness of 1 Inch.

Aerodynamic heating Is applied uniformly to one side (r = 0) and the flaw is

located on the other side (r = w) where the surface Is assumed adiabatic. The

surface heat flux was modelled as a traditional convective heating with

surface reradiation effects associated with a black body radiator. An

equivalent heat transfer coefficient and convective gas temperature were

estimated from measurements on metallic specimens subjected to s ace shuttle

reentry conditions (21). Maximum heat fluxes of about 50 BTU/ft -sec

(57 W/cm 2 ) and a surface heat transfer coefficient

0.008 x 10 Ibm/ft -sec based on the enthalpy gradient between the wall

and the air. An equivalent h and T were establ Ished from these data by

equating surface heat flux with estimated air temperatures at corresponding

free stream test pressures and enthalples to give:

h = 18 BTU/(hr-ft 2 F

(6-1)

Tw = 1O,0000 F
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It should be noted that the resulting heat rate Is approximately an order of

magnitude less severe than the laser heating problem analyzed In Section 5.

STRESS SOLUTIONS

The temperature and stress solution for the plate was solved by the Implicit

finite difference model. The plate was represented by 21 nodes with a linear

spacing of 0.05 Inch. A constant time Increment of 0.1 second was used In all

transient solutions. The temperature change for times up to 30 seconds Is

shown In Figure 6-1. The initial temperature of the plate was 700 F. At

1 second, the surface temperature was computed to be approximately 130F, but

the temperature at x = w still remains unelevated. At 30 seconds, the AT

across the plate Is approximately 100 0 F.

The tangential (a ) stress for the transient times of 0.1, 1, and 10 seconds
z

is shown In Figure 6-2. Although the stress variation with distance through
the thickness Is nonlinear, the basic response of the plate will be to bend

like a beam due to the thermal upset at the surface. The through thickness

stress is negative and relatively small compared to 0 and, therefore, It Is
z

not plotted. Inspection of the stress distributions to 30 seconds Indicates

that the maximum stress In the region where the flaw will be postulated

(x/w = 1) occurs between 7 and 10 seconds. The peak tensile surface stress

occurs at 9.4 seconds.

STRESS INTENSITY FACTORS

Again, the Influence function method was used to calculate the Mode I stress

intensity factor. The K variation as a function of time is given In

Figure 6-3. As suggested by the stress solutions, the peak stress Intensity

factor occurs at approximately 9 seconds after heating begins and slowing

attenuates with time. Five K curves are plotted, each corresponding to a
,

-e different but constant crack penetration (a/w = 0.1 through 0.5). Maximum K

level for each flaw depth Is observed to occur at approximately the same pointn1/2
In time with the largest value being 16.9 ksi-In for a flaw that is
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one-half the wall thickness in depth. Because the thermal heating is less

severe than The case of laser heating, these calculated stress intensity

factors are lower in magnitude.
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Section 7

COMPUTER HARDWARE AND SOFTWARE REQUIREMENTS v

INTRODUCT ION

The computer programs developed for this Investigtion were all written In

FORTRAN and were executed on an IBM4-3081 system located at Stanford

University. The FORTRAN language was selected because of Its general use In

eng Ineer Ing. These programs were written to demonstrate the Influence

function method and to obtain approximate estimates of execution times for

various machines. These computer codes are not considered to be production

programs. Further developments willI be required before the basic algorithms

are suitable for general use. Recommendations for additional capabillities are

given In Section 8.

The purpose of this secti on I s to dliscuss the appllIcablll Ity of these methods

for use on desktop computers. Since the major concern here will be accuracy%

and speed, these two basic characteristics were studied. In addition, a

specification for a general purpose program Is given.

PROBLEM EXECUTION

The problems of laser Impingement and aerodynamic heating were solved In two

basic steps. First, the thermal stress solution (heat flow and stress

analyses) was performed followed by the stress Intensity factor solution.

Each step was performed by an Individual program. The performance of

different computers was determined by comparing the execution times of

Individual microcomputers with the central processing unit (CPU) execution

time of the 1BM-3081 system.

The microcomputer systems studied were all based on Intel 8088 or 80286

microprocessors In a system architecture similar to IBM-PC/XT and IBM-PC/AT 4

7-1
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systems. Because clock speed and the use of a math coprocessor can greatly

enhance machine performance, these hardware features were also tested. The

coprocessor for the 8088 CPU Is the 8087 and the coprocessor used with The

80286 CPU Is the 80287. All machines contained and were executed from hard

di sks.

A summary of individual machine performance was as measured by execution time

as shown in Table 7-1. All times listed are In units of seconds. Three

problems were solved as shown--a thermal stress solution for laser heating, a

thermal stress solution for aerodynamic heating, and a stress intensity factor

for an edge cracked plate. Execution times Included both CPU time and

Input/output times associated with the disk. Although the slowest algorithm

appears to be the explicit finite difference solution for thermal stress, this

problem required many more nodes In the model. Hence, comparison between

algorithms should not be made In Table 7-1. It would be expected that the run

times for the Implicit method would significantly Increase with the number of

nodes used; however, the stability of The method would allow for larger time

Increments to be employed.

All execution times displayed by the microcomputers are within the realm of

practical application; however, waiting up to 35 minutes for a thermal

solution and 20 minutes for corresponding K solution for a 8088 machine

without a coprocessor will undoubtedly be annoying to the user. The

microcomputers exhibited execution times that ranged from 40 to 1,400 times

slower than the IBM-3081 mainframe system. The greatest Improvement Is

observed when a coprocessor Is used where a factor of five on speed

enhancement was recorded. This is consistent with the math intensive

numerical procedure and double precision arithmetic used In the algorithms. A

40 percent speed Improvement was observed when clock speed was changed from

4.77 MHz to 8 4-z.

As expected, the 80286 machine was the best performing system with run times

less than 1 minute. This class of machines is well suited for the

applications intended.
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The accuracy of microcomputers as compared with the results from the IBM-3081

was excellent. The word length for the 8088 system was determined to be 24
bits for the mantissa. Therefore, the 8088 microcomputer has the same number
of significant digits In floating point arithmetic as the ma!nframe. In fact,

the mantissa for single precision arithmetic in the 3081 system ranged between

21 bits to 24 bits depending on the size of the number. This suggests that

the microcomputers studied herein, on average, have more precision than the
3081 mal nf rame.

SOFTWARE SPECIFICATION

The software Is not organized for production work. Improvements will be

required In the area of Input/output formats, solution efficiency, and post

processing of results. A flowchart showing the general numerical procedure is

shown in Figure 7-1. It Is proposed that FORTRAN be used wherever possible

because of Its general use as a scientific programming language. The Input to

the program will require he greatest development because all well accepted

programs are those that are simple to use, to understand, and to modify Input

files. Programs that can accept both batch Input files as well as menu driven

Input have the greatest flexIbl Ity to create new problem Input filIes or

change existing or previously created Input files. The use of "help files"

will greatly Improve the speed of solving problems when a users manual Is not

conveniently available to answer questions.

The solution algorithms can follow the basic structure of the programs.

Because these programs were written for solving demonstration problems, their

efficiency Is not optimum. Additional software will be required to provide

for a library of properties for appropriate aircraft structural materials.

The properties should cover the temperature range expected for the appl ication

of the method. The Influence function flaw models should also be organized in

a library format for ease of selection and use by the analyst.

Recommendations on expanding the capabilities of the present demonstration

software are discussed In Section 8.
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Solve Heat Flow Equation Thermal
and Calculate Temperature . Properties
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Figure 7-I f low(hart howi nq General Numerical

Procedure.
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The processing of output will take the form of either printed summary tables,,
or graphs as selected by the user. Either output format option should have =

the capabil ity of being displayed on the monitor as well as printed or plotted

on a hard copy device. Displaying of results on the computer monitor is very
useful in quick problem solving and input iterations, especially if they can

be performed in a timeshare environment. Both timeshare and batch

environments are easy to Implement on a single-user microcomputer system.
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Section 8

SUMMARY AND CONCLUSIONS

The Influence function method Is a very powerful technique for calculating

stress Intensity factors given that the stress state for the structure without

the flaw Is known. For thermal stress problems, the Influence function method

Is very useful because repetitive K solutions are often required due to time

varying stress conditions and multiple flaw orientations of Interest. While a

knowledge of the stresses along postulated crack planes Is required for Input

to the method, these stress solutions can be solved numerically by algorithms
that complement Influence function methods In both simplicity and speed. This

capabilIty has been demonstrated for two Intense heating problems--laser beam

Impingement and aerodynamic heating. Results from these analyses suggest that
stress Intensity factors for the thermal conditions assumed can be sIgnificant

and must be accounted for in structural reliability assessments where severe

surface heating Is an expected or potential event.

The computer resources required to perform these computations were not

significant, and all computations can be performed on currently available

desktop microcomputers. Although execution times for microcomputers were very

slow compared to an IBM-3081 mainframe system (up to 1,400 times slower

depending on microcomputer architecture), problem run times of less than

2 minutes are expected for a 80286-based microcomputer, such as an IBM-PC/AT

personal computer. Therefore, the Influence function method, including

supporting thermal heat flow and stress analysis, can be accommodated by

currently available microcomputers that already enjoy wide acceptance and use.

Also, the accuracy of the methods did not degrade when executed on the smaller

microcomputers. The methods developed herein are, therefore, candidates for

use as a desktop design tool as well as an Infl Ight expert system for real

time damage assessment.
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Because the software developed during this project was for the purpose of

demonstrating the methods, the programs are not set up for production problem

execution. Additional refinements to the methods are required before the

methods can be used on general thermal problems. Specifically, the present

programs should be enhanced in the following areas:

" Expand the thermal heat flow and thermal stress numerical procedure to

two-dimensional analysis

" Improve the thermal heat flow algorIthm for speed and stability;

explore more stable methods that are explicit In nature

" Include temperature varying properties and surface phase change

(melting, subl imation)

" Expand the number of Influence functions to Include flaw models for

cracks emanating from structural discontinuities, such as holes and

stiffener attachments

" Provide for coupling between thermal solution and stress solution when

large deflections occur

" Verify accuracy of overall thermal analysis procedure by performing

analytical and experimental test problems

" Explore the application of the computer software and hardware deve-

loped here to an aircraft onboard expert system

* Prepare user documentation for the method

The laser impingement problem illustrated that local plasticity within the 0.7.

radiation zone and vaporization are possible In extreme cases. At a minimum,

these conditions should be checked by the program and the solution procedure b

modifled to account for this. These advanced problems can be handled by the

8-2
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method provided that the plasticity Is contained In the zone and the flaw Is
well surrounded by an elastic medium. For the case of complete burn through,

the situation becomes the problem of a crack In the vicinity of an expanding

hole that is being heated on its boundary. Such a case could still be solved "

by the methods described herein, provided that the proper boundary value

problem solution for stress is developed.

In conclusion, the objectives of the project have been achieved. The

Influence function method is a viable technique for determining stress

Intensity factors for real istic thermal boundary assumptions. Because of the

simple numerical procedure, the method will execute efficiently on snall

microcomputers. S
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